Что такое резонанс токов и как он возникает

Следует отметить, что такое явление, как резонанс токов наблюдается только в электрических цепях, которые работают с переменным током. В ней обязательно должны присутствовать элементы индуктивности и ёмкости.  В сильноточных электрических контурах режим резонанса распространения не получил, но он активно реализуется в системах современной звукозаписывающей и звуковоспроизводящей техники, поскольку позволяет значительно улучшить частотные характеристики выходного аудиосигнала, не увеличивая мощность исходных компонентов.

Определение резонанса токов

Суть процессов, происходящих при резонансе

Резонанс токов и напряжений — процесс, в результате которого происходит усиление амплитуды сигнала. При этом резонанс токов (РТ) является более действенный способом управления, поскольку даже при незначительном росте данного параметра электроцепи амплитуда сигнала существенно увеличивается. Резонанс напряжений подобного эффекта вызвать не может, даже после заметного усложнения схемы устройства.

Резонанс токов возникает в электрической цепи переменного тока, для которой частота электропитания обеспечивает одинаковое значение напряжения на основных элементах схемы — катушке индуктивности L, конденсаторе C и резисторе R. При этом фазы напряжений противоположны. Показатели частотности контура варьируются вследствие изменения абсолютных значений частоты. Таким образом, резонансом тока пользуются, если возникает необходимость создания определённой частотной характеристики конкретного участка цепи.

Условия возникновения резонанса электротоков могут быть реализованы лишь при параллельном соединении катушки индуктивности, конденсатора и резистора. Основные признаки резонанса — это равенство резонансной частоты и частоты источника электротока или индуктивной и емкостной проводимости BL=BC.

Схема параллельного колебательного контура

Изучая, что такое резонанс токов, следует понимать, что общий ток в электроцепи представляет собой сумму токов в ее разветвлениях. В индуктивной ветви электроток отстает от электронапряжения на ¼ периода, а в емкостной ветви, наоборот, электроток опережает электронапряжение на ¼ периода. Следовательно, электротоки в ветвях сдвинуты по фазе относительно друг друга на ½ периода, то есть пребывают в противофазе. Вектор общего электротока в колебательном контуре равен геометрической сумме векторов элетротоков в каждой из ветвей.

Электроток в колебательном контуре

Следовательно, значение модуля электротока определяется так:

Определение модуля электротока

Частотное условие для возникновения РТ

В цепи синусоидального тока, которая содержит R, L и C компоненты, можно получить режим, когда показатель индуктивного сопротивления оказывается идентичным по своему значению показателю емкостного сопротивления. Другими словами, XL=XC . Место, где это происходит, называется точкой формирования резонансной частоты (ƒr) электроцепи. Наличие такой точки — это непременное условие резонанса токов.

Резонанс может быть двух видов:

  • последовательный;
  • параллельный.

Последовательный тип резонанса отличается минимальным сопротивлением при нулевой фазе. Параллельный резонанс появляется при равных по величине сопротивлениях на индуктивности и емкости, но компенсирующих друг друга, поскольку являются противоположно направленными. Параллельный тип более распространён и часто встречается в различных электрических, радиотехнических и электронных устройствах, например, в:

  • фильтрующих узлах систем переменного электротока;
  • фильтрах, предназначенных для целей шумоподавления;
  • настроечных системах радиотелевизионных передающих центров.

Параллельный колебательный контур называют также RLC-контуром. Это связано с аббревиатурой физических величин, свойственных элементам, составляющих данный контур — сопротивления, индуктивности и емкости. Он характеризуется следующими особенностями.

Особенности колебательного контура

При росте показателей индуктивности или частотных характеристик сигнала суммарное значение индуктивного сопротивления увеличивается. В том случае, когда показатель частоты стремится к бесконечности, реактивное сопротивление индукторов резко возрастает, а участок схемы, где это происходит, ведёт себя как разомкнутая цепь. Однако в противоположном случае может возникнуть обратный эффект, проявляющийся в форме короткого замыкания при нулевом сопротивлении. Это происходит, если катушка индуктивности имеет сопротивление:

  • Пропорциональное изменению частотной характеристики.
  • Слабо реагирующее на изменения в области низких частот.
  • Сильно реагирующее на изменения в области высоких частот.

В таких случаях значение индуктивного (реактивного) сопротивления катушки увеличивается прямо пропорционально росту частотной характеристики. Подобный же эффект наблюдается и на конденсаторе, но в обратной последовательности. Если требуется изменить (увеличить) параметры контура, тогда уменьшают значение емкостного сопротивления.

Зависимость индуктивного сопротивления от частоты

Если частота электроцепи приближается к бесконечности, то сопротивление на конденсаторах практически принимает нулевое значение. В результате данные компоненты устройства превращаются в стопроцентные проводники переменного тока с сопротивлением равным нулю. Однако при этом происходит мгновенный рост реактивной составляющей сопротивления, и контур становится разомкнутым.

Суммируя, можно придти к заключению, что реактивное сопротивление конденсатора изменяется обратно изменению частоты, причём номинальная ёмкость компонента значения не имеет.

Зависимость значений сопротивления конденсатора от частоты электроцепи представляет собой гиперболическую функцию. При низких значениях частот реактивное сопротивление конденсатора велико, но в случае роста частотной характеристики оно стремительно снижается. Отсюда можно сделать вывод, что значение сопротивления конденсатора зависит от частоты обратно пропорционально.

Зависимость емкостного сопротивления от частоты

На выше приведенных графиках видно, что при более высокой частоте наблюдается максимум XL, а при низкой — максимум XC. Следовательно, резонанс появляется при условии, что изменения двух противоположных, но равных по своему значению реактивных сопротивлений, накладываясь друг на друга, нивелируют возникающие особенности прохождения переменного тока слабой мощности, т. е. наблюдается условие XL=XC.

Точка пересечения реактивных сопротивлений

Расчёт месторасположения частотной точки при РТ

Последовательность вычислений приведена ниже:

Вычисление местоположения частотной точки

В случае появления РТ происходит математическое уравновешивание значений реактивных сопротивлений, т. е. справедливым является равенство XL–X C=0. Комбинируя индуктивное и емкостное сопротивление, в цепи можно вызвать короткое замыкание (из-за малой мощности тока разрушения контура обычно не происходит). Сдерживающим фактором считается наличие ненулевого общего сопротивления R электрической цепи, которое называют импедансом.

Для контуров переменного электрического тока сопротивление рассматривают в  комплексной форме. В этом случае полное сопротивление цепи, которая содержит активное сопротивление, емкость и индуктивность, представляет собой действительную, а не мнимую часть. Приняв это допущение, импеданс электрической цепи в случае резонансной частоты равен величине активного сопротивления: Z=R.

При РТ импеданс минимален, поэтому понятие полного сопротивления цепи иногда называют динамическим. С преобладанием высоких частот импеданс зависит преимущественно от XC, а при низких — от XL.

Минимальный импеданс

Важно, что в ситуации, когда контур содержит компоненты, имеющие емкостное сопротивление, кривая зависимости полного сопротивления от частоты переменного тока всегда отображается в форме гиперболы. Функция может быть несимметричной относительно fr, если влияние индуктивности велико.

В том случае, когда полное сопротивление цепи имеет минимальное значение (а это часто отмечается именно при резонансе токов), проводимость участка приобретает своё наибольшее значение. На практике возникновение подобных ситуаций может привести к опасному явлению, когда РТ многократно увеличивает ток. Устройство при этом, скорее всего, выйдет из строя.

Как влияет напряжение

В последовательном контуре цепи переменного тока напряжение определяется в результате векторного суммирования значений VR, VL и VC. При этом сумма каждых двух из определяемых значений напряжения представляется с поворотом осей на 90 градусов, причём по и против часовой стрелки. Если справедливо равенство VL=–VC, то конечные значения реактивных напряжений снимаются, поэтому напряжение от источника питания поступает исключительно на активное сопротивление. Другие изменения, когда короткое замыкание присутствует (справа) и отсутствует (слева), ясны из рисунка, приведенного ниже.

Импеданс в условиях короткого замыкания

Ток, который проходит в работающем последовательном контуре, определяется как сумма произведений напряжения, отнесённого к значениям импеданса. В случае резонанса токов значение импеданса минимально. Поэтому РТ в отличие от резонанса электронапряжений является безопасным для электроустановок. Электротоки большой величины возможны в ветвях лишь при наличии больших реактивных проводимостей, то есть, в случае использования больших батарей конденсаторов, мощных реактивных катушек. Ничего необычного в этом нет, поскольку электротоки в ветвях взаимно независимы, их определение основывается на законе Ома.

Изменения тока, протекающего в последовательном контуре

Амплитуда силы тока при резонансе в последовательном контуре является максимальной.

Значение электротока при возникновении резонанса

Рассматривая частотную характеристику последовательного резонансного контура, становится ясно, что фактическая величина тока в условиях РТ функционально зависит от ƒr. Вначале ток минимален, при IMAX =IR достигает наибольшего значения, а далее, когда значение ƒr стремится к своему максимальному показателю, вновь уменьшается.

Как следствие, фактическое значение напряжения на обмотках катушки индуктивности L и на пластинах конденсатора C может быть во много раз выше, чем напряжение, которое вырабатывается источником питания. Но при резонансе эти напряжения равны и направлены противоположно друг другу. Поэтому происходит суперпозиция напряжений, что обуславливает возможность практического применения резонанса токов в радиоэлектронных устройствах. Вместе с тем надо помнить, что последовательный резонансный контур действителен лишь для определённых значений ƒr.

Значение наибольшего напряжения в последовательной цепи переменного тока обязательно должно согласовываться с током по фазе. Фазовый угол между напряжением зависит от частоты, если напряжение питания неизменно, а для точки ƒr вообще равен нулю. Соответственно, мощность устройства будет наибольшей.

Фазовые углы при резонансе электротоков

Определить направление фазового угла можно по текущему значению частоты: если ƒ>ƒr, то фазовый угол следует отсчитывать против часовой стрелки, в противном случае (ƒ<ƒr) — по часовой стрелке.

Когда RLC-цепь управляется от источника с постоянным напряжением, то фактическое значение тока линейно зависит только от полного сопротивления цепи. Таким образом, важным следствием резонанса токов является наибольшее значение мощности, которая требуется для работы устройства.  При этом образуются две точки, которые называются точками половинной мощности. Для устройств, занимающихся формированием и обработкой аудиосигналов, эти точки располагаются в зонах, отстоящих на 3 дБ от наибольших частотных границ.  При этом в качестве оси симметрии принимают линию, соответствующую 0 дБ.

Полоса пропускания при резонансе

Для половинной мощности параметр ƒL носит название нижней границы, а ƒН — верхней. Диапазон между этими точками представляет так называемую полосу пропускания (BW). Практически полоса пропускания — это интервал, где реализуется не менее 50% от наибольшей мощности устройства.

Видео по теме

Adblock
detector