Первый и второй закон коммутации

Электрическая цепь может находиться в различных состояниях. В качестве примера можно привести включённое или выключенное. В моменты, когда цепь переходит из одного в другое, в ней могут происходить достаточно сложные процессы, которые называют переходными. В это время в большинстве случаев за доли секунды происходит перераспределение энергии. Более подробно разобраться в том, как осуществляются эти изменения, поможет знание двух законов коммутации.

Режимы в цепи переменного тока

Переходные процессы

В процессе работы электрическая цепь основную часть времени находится в установившемся состоянии. Однако при включении, отключении или переключениях оно будет меняться. В это время на протяжении очень краткого промежутка происходят переходные процессы, которые имеют свои особенности.

Для примера можно представить включение или выключение цепи постоянного тока, содержащей катушку индуктивности. В стабильном состоянии самоиндуктивность будет отсутствовать. При включении возникнет электродвижущая сила, препятствующая движению тока.

Однако в момент выключения ЭДС способна резко усилить ток. В некоторых ситуациях это может привести к появлению искры при размыкании электроцепи или другим последствиям. Приведённый пример показывает важность изучения поведения электрической сети во время переходных процессов.

Коммутацией называют замыкание или размыкания ключей, управляющих работой электроцепи. При этом может рассматриваться включение и отключение всей цепи или её отдельных участков.

Два закона коммутации

Законы коммутации

В основном процессы коммутации определяются индуктивными и емкостными характеристиками электроцепи. Законы коммутации устанавливают закономерности их влияния на параметры цепи во время переходных процессов. Их использование позволяет более точно определить нужные характеристики.

Первый закон

Первый закон коммутации характеризует влияние индуктивности. Он утверждает следующее: в любой ветви цепи с катушкой в момент, когда начинается коммутация, сила тока и магнитный поток начинают изменяться с тех величин, которые были в предыдущий момент.

Цепь с индуктивностью

Для доказательства этого утверждения используется второй закон Кирхгофа. Как известно, он говорит о том, что сумма падений напряжений на замкнутом участке цепи равна нулю.

В рассматриваемой ситуации можно использовать следующую формулу:

Второй закон Кирхгофа

В приведённом выражении второе слагаемое представляет электродвижущую силу, создаваемую во время переходных процессов индуктивностью. Если допустить скачкообразное изменение тока, то это слагаемое станет равно бесконечности, что невозможно. Таким образом, отсюда следует истинность первого закона коммутации.

Второй закон

Второй закон коммутации относится к участкам электроцепи с ёмкостью. При выполнении коммутации напряжение и величина заряда на обкладках конденсатора начинает изменяться непосредственно с тех значений, которые были в последний момент перед началом переходного процесса.

Для доказательства истинности данного утверждения можно рассмотреть следующую электрическую цепь.

Цепь с ёмкостью

Для доказательства необходимо использовать второй закон Кирхгофа, который в рассматриваемом случае примет следующий вид:

Применение второго закона Кирхгофа

Производная напряжения, которая присутствует в формуле, не может быть равна бесконечности. Однако это становится возможным при скачкообразном изменении напряжения, что доказывает справедливость второго закона коммутации.

В общем виде оба закона могут быть записаны следующими выражениями:

Законы коммутации

Надо заметить, что законы корректной коммутации никак не ограничивают характер изменения емкостных токов или индуктивных напряжений. Эти параметры могут изменяться произвольно, в том числе и скачкообразно.

Видео по теме

Adblock
detector