Что такое полное сопротивление цепи и как его правильно найти

Для начала нужно понять, что такое электрическое сопротивление. Это физическая величина, которая отражает противодействие движению электротока по схеме или же внутри проводника. Данная величина взаимосвязана с электронапряжением и силой электротока, что отражено в законе Ома, названном так по имени немецкого физика.

Формулировка закона Ома
Формулировка закона Ома

Виды электрических сопротивлений

Известно о двух видах электронапряжения — постоянном и переменном. В электроцепи постоянного тока присутствует исключительно активное электросопротивление. Таким является любое электросопротивление, поглощающее энергию. В этом случае найти полное сопротивление поможет формулировка закона Ома.

В электроцепях с переменным напряжением есть реактивное электросопротивление, то есть такое, которое энергию не поглощает. Оно делится на емкостное и индуктивное. В реальности не существует электроцепей только с каким-либо одним видом электросопротивления. Наряду с резисторами в них используются емкости и катушки индуктивности. Поэтому в электротехнике вводится такое понятие, как полное сопротивление цепи, представляющееся в виде векторной суммы всех электросопротивлений, присутствующих в данной цепи.

Классификация электроцепей-переменного электротока
Классификация электроцепей переменного электротока

Величина реактивного электросопротивления зависит от частоты параметров используемой электросети. Формула, с помощью которой можно определить емкостное электросопротивление, выглядит так:

Определение емкостного сопротивления
Определение емкостного сопротивления

Здесь ω — угловая частота. Она связана с частотой электросети f и определяется по формуле:

Значение угловой частоты
Значение угловой частоты

Индуктивное электросопротивление находим с помощью такого выражения:

Определение индуктивного электросопротивления
Определение индуктивного электросопротивления

В формулах для определения емкостного и индуктивного электросопротивления используются определенные физические величины. Их обозначение и единицы измерения приводятся в таблице ниже. Само электросопротивление измеряется в омах.

Таблица физических величин
Таблица физических величин

Чтобы вычислить полное сопротивление цепи Z, учитывающее все имеющиеся активные и реактивные составляющие, следует воспользоваться формулой:

Вычисление импеданса
Вычисление импеданса

Определение эквивалентного сопротивления

В электросхеме может быть использовано несколько нагрузок одного вида, соединенных между собой последовательно или параллельно. В первом случае их электросопротивления складываются. Поэтому эквивалентное сопротивление будет тем больше, чем больше элементов соединено последовательно.

Электроцепь с последовательно соединенными активными проводниками
Электроцепь с последовательно соединенными активными проводниками

Если используется параллельное соединение проводников, расчет полного сопротивления цепи выполняется несколько иначе:

Определение эквивалентного электросопротивления при параллельном соединении
Определение эквивалентного электросопротивления при параллельном соединении

В данном случае эквивалентное сопротивление с увеличением количества используемых нагрузок будет уменьшаться. Такое явление можно наблюдать в повседневной жизни: чем больше к электросети подключено потребителей, тем меньшим будет значение эквивалентного электросопротивления и большим электроток нагрузки.

Как определяется ПС при последовательном соединении емкостей и индуктивностей

При наличии реактивной нагрузки в электроцепи будет наблюдаться опережение или отставание электротока от электронапряжения. При подключении индуктивной нагрузки электроток отстает от электронапряжения, а емкостной, наоборот, опережает. То есть, при подключении конденсатора к источнику переменного электротока он будет постоянно перезаряжаться с частотой, соответствующей частоте электросети. Электроток при этом будет увеличиваться раньше, чем электронапряжение. При подключении индуктивного контура наблюдается обратный результат.

Графическое изображение электрических величин при последовательно соединенных элементах электроцепи
Графическое изображение электрических величин при последовательно соединенных элементах электроцепи

Рассмотрим схему с использованием последовательно соединенных резистора и индуктивности.

Электросхема с использованием резистора и индуктивности соединенных последовательно
Электросхема с использованием резистора и индуктивности соединенных последовательно

Для этого участка цепи результирующее электронапряжение в точках А и В можно определить достаточно простым способом — геометрическим сложением векторов UL и UR. Как видно из рисунка, результирующий вектор UАВ — это гипотенуза треугольника. Следовательно, чтобы рассчитать ее, можно применить теорему Пифагора:

Определение результирующего электронапряжения
Определение результирующего электронапряжения

Если исходить из формулировки закона Ома, то электронапряжение — это произведение электросопротивления и силы электротока. Поскольку последний параметр во всех точках электроцепи имеет одинаковое значение, то квадрат ПС — это сумма квадратов электросопротивлений, называемых активными и реактивным:

Сумма квадратов электросопротивлений
Сумма квадратов электросопротивлений

Следовательно, полное сопротивление приведенной цепи Z определяется выражением:

Определение ПС
Определение ПС

Кроме расчетов для определения ПС в цепи можно использовать еще и геометрический способ, являющийся построением треугольника, представленного на рисунке 11д. Его катеты — это активное и реактивное электросопротивление для участка цепи. Понятно, что стороны треугольника следует откладывать в одном масштабе.

Полное сопротивление цепи в рассматриваемом случае не будет исключительно активным или реактивным. В него входят обе составляющие. По этой причине угол сдвига по фазе между электротоком и электронапряжением может меняться от 0 до 90 градусов. К какому из этих предельных значений будет приближена величина φ, зависит от вида преобладающего электросопротивления. Если индуктивная составляющая превышает активную, φ стремится к 90 градусам, а преобладающая активная составляющая уменьшает его до нуля.

Теперь рассмотрим электроцепь с присутствующими в ней резистором и конденсатором, соединенными последовательно. Полное сопротивление цепи и в данном случае можно определить, используя построение треугольника.

Электросхема с последовательно соединенными резистором и конденсатором
Электросхема с последовательно соединенными резистором и конденсатором

Как можно увидеть из рисунка, треугольник сопротивлений, построенный для активно-емкостного участка цепи, развернут в другую сторону. Это связано с тем, что электроток в емкости опережает электронапряжение (в активно-индуктивной ветви электроток отстает от электронапряжения). Полное электрическое сопротивление цепи Z в данном случае будет равно:

Определение импеданса при использовании резистора и конденсатора в электроцепи
Определение импеданса при использовании резистора и конденсатора в электроцепи

Если же в электроцепи присутствуют все виды электросопротивлений, то сначала следует найти реактивную составляющую, а потом уже и значение ПС или импеданса.

Электросхема с использованием разных видов электросопротивлений
Электросхема с использованием разных видов электросопротивлений

Общее реактивное электросопротивление для данного участка цепи — это разница между индуктивной и емкостной составляющими, поскольку они по своему характеру являются противоположными друг другу.

Расчет общего реактивного электросопротивления
Расчет общего реактивного электросопротивления

Полное сопротивление электрической цепи при наличии индуктивной и емкостной составляющей определяется по формуле:

Определение ПС при наличии индуктивности и емкости в электроцепи
Определение ПС при наличии индуктивности и емкости в электроцепи

Треугольник электросопротивлений при наличии индуктивной и емкостной составляющей показан на рисунке.

Немаловажно понимать, что если одно из электросопротивлений (емкостное или индуктивное) больше другого более, чем в десять раз, то составляющую с наименьшим значением можно оставить без внимания.

Определение ПС при использовании параллельного соединения элементов

На рисунке ниже изображены графики электронапряжений и электротоков, присутствующих на нагрузках при параллельном соединении.

Графики электронапряжений и электротоков при параллельном соединении элементов электроцепи
Графики электронапряжений и электротоков при параллельном соединении элементов электроцепи

Чтобы определить полное электрическое сопротивление цепи, включающей резистор и индуктивность или резистор и емкость, соединенные параллельно, необходимо в первую очередь найти проводимость каждой параллельной линии, затем общую проводимость этой цепи между точками А и В. На последнем этапе вычисляется ПС между А и В.

Пример электросхемы с параллельно соединенными элементами
Пример электросхемы с параллельно соединенными элементами

Вычисляемое значение проводимости активного участка цепи равняется 1/R, индуктивного — 1/ ωL. Формула для определения полной проводимости выглядит так:

Полная проводимость участка электроцепи
Полная проводимость участка электроцепи

Приводя к общему знаменателю выражение под знаком корня, получаем следующее выражение:

Формула после преобразования
Формула после преобразования

Отсюда находим формулу для определения ПС для участка цепи с параллельно соединенными резистором и индуктивностью:

Определение ПС при параллельно соединенных элементах
Определение ПС при параллельно соединенных элементах

Формула для вычисления ПС при использовании параллельного соединения резистора и емкости имеет такой вид:

Определение ПС при параллельном соединении резистора и емкости
Определение ПС при параллельном соединении резистора и емкости

В радиотехнике чаще всего используется параллельное соединение конденсатора и катушки индуктивности, например, в колебательном контуре. Поскольку катушка имеет и индуктивное, и активное сопротивление, то в индуктивную ветвь включается еще резистор.

Схема колебательного контура
Схема колебательного контура

Для определения ПС следует воспользоваться формулой:

Определение ПС колебательного контура
Определение ПС колебательного контура

Учитывая то, что активное электросопротивление катушки значительно меньше индуктивного, формулу можно представить так:

Формула для расчета ПС колебательного контура
Формула для расчета ПС колебательного контура

Значение индуктивности и емкости для колебательного контура принято выбирать так, чтобы соблюдалось условие:

Условие для колебательного контура
Условие для колебательного контура

В данном случае для определения ПС колебательного контура получаем очень простую формулу:

Упрощенная формула для расчета ПС колебательного контура
Упрощенная формула для расчета ПС колебательного контура

С целью облегчения расчетов импеданса используют комплексные числа. Действительную часть такого числа представляет активное электросопротивление, а мнимую — реактивное.

Для последовательно соединенных радиоэлементов ПС в комплексном виде можно представить так:

Определение комплексного ПС
Определение комплексного ПС

В тригонометрической интерпретации модулем комплексного числа является ПС, а аргументом — угол φ.

Треугольник сопротивлений
Треугольник сопротивлений

Следовательно, активную и реактивную составляющие ПС можно найти по формулам:

Определение составляющих ПС
Определение составляющих ПС

При вычислении ПС или импеданса для параллельно соединенных элементов используют сумму проводимостей — величин, обратных электросопротивлениям.

Треугольник проводимостей
Треугольник проводимостей

Комплексная проводимость является величиной, обратной комплексному электросопротивлению. Алгебраически она выражается так:

Определение комплексной проводимости
Определение комплексной проводимости

Вычисление импеданса является достаточно сложной задачей, поскольку используется большое количество формул, тригонометрических функций. Поэтому с целью облегчения расчетов можно воспользоваться онлайн калькулятором. Чтобы получить результат, понадобится лишь ввести значение частоты электротока, емкость конденсатора, индуктивность катушки, сопротивление резистора.

Видео по теме

Adblock
detector