Изучаем метод контурных токов с примерами

Электрические схемы могут быть очень сложными. Чтобы рассчитать действующие в них токи, пользуются первым и вторым правилами Кирхгофа. В этом случае составляют систему уравнений, на основании которых можно узнать, какова сила электротока в каждом контуре. Метод контурных токов позволяет сократить объем проводимой работы. Решать уравнения можно самостоятельно или же используя онлайн калькулятор.

Суть метода

В составе любой электрической цепи имеются контуры и ветви. Действующие в них электротоки определяют при помощи правил Кирхгофа. При этом количество уравнений будет совпадать с количеством неизвестных величин.

Правила Кирхгофа

Существуют способы упростить расчет цепей, сокращая количество необходимых для решения задачи уравнений. Один из наиболее известных основывается на таком понятии, как контурный ток. С его помощью процедура расчёта становится более эффективной, что особенно выгодно при рассмотрении наиболее сложных электрических цепей.

Иногда возникает вопрос, являются ли контурные токи реальными токами ветвей. В отдельных случаях это может быть так, но не всегда. Действительный ток равен контурному, если он протекает лишь в одном контуре.

При проведении расчётов онлайн или офлайн применяются особые, искусственно смоделированные электротоки. Одна из особенностей смоделированных электротоков заключается в том, что каждый проходит внутри элементарного контура. При этом рассматриваются только те из них, которые по сравнению друг с другом имеют новые ветви.

Расчет по методу контурных токов предполагает, что не все токи в рассматриваемой схеме являются независимыми. Поэтому этот способ позволяет сократить количество нужных для расчета уравнений. С его помощью можно определить действительные токи на каждом участке схемы.

Практическое применение

Чтобы лучше понять, как можно определить токи в ветвях цепи методом контурных токов, предлагаем рассмотреть такую схему.

Пример схемы для проведения расчетов

Анализ схемы показывает, что есть и контурные, и реально протекающие электротоки. Первые имеют индекс из одной цифры, вторые — из двух. Нужно заметить, что каждая сторона треугольника является отдельным контуром. В каждом из них задано направление обхода. Оно выбирается произвольно, но определяет знаки токов проходящих в ветвях. В качестве нагрузки используются резисторы, но могут рассматриваться и более сложные элементы. Учитывая направление токов, составляем систему уравнений:

Уравнения для контурных электротоков

Чтобы рассчитать составленную систему, воспользуемся правилами Кирхгофа:

Уравнения преобразованные с учетом правил Кирхгофа

Расчет цепей методом контурных электротоков можно выполнить также с помощью специальных онлайн сервисов. Приведенная выше формула может быть представлена следующим равенством:

Формула для определения электротоков

В этом выражении использованы следующие обозначения:

  • Равные индексы, относящиеся к сопротивлению, представляют собой суммарную величину для k-го контура электрической цепи.
  • Если для сопротивления использованы индексы k и m, то речь идёт об общем сопротивлении, которое входит одновременно в 2 контура с такими номерами.
  • Нужно обратить внимание, что в последней формуле присутствуют контурные токи в k-м контуре.
  • С правой стороны знака равенства указана суммарная электродвижущая сила для k-го контура.

При определении неизвестной величины слагаемое берётся с плюсом в тех ситуациях, когда направления электротоков в соседних контурах совпадают, и с минусом, когда они противоположные. ЭДС контура может быть положительной или отрицательной. Первый вариант применяется в тех случаях, когда направления электродвижущей силы и контурного электротока совпадают. В противном случае ЭДС берётся с минусом.

Уравнение составляется не для всех контуров. Исключением являются те, в которых присутствует источник электротока. В такой ситуации контурный ток совпадает с реальным. Количество уравнений в полученной системе равно количеству контуров, являющихся независимыми, то есть тех, у которых имеется хотя бы одна ветвь, отличающая их от всех других. Решение полученной системы уравнений позволит вычислить электротоки на каждом участке схемы.

Примеры решения задач

Необходимо решить задачу с исходными данными, представленными на рисунке ниже.

Схема с исходными данными

Исходя из заданной схемы, можно выделить три контура. Затем следует указать направление контурных и действительных электротоков.

Схема с указанными направлениями электротоков

Теперь следует рассчитать собственные сопротивления каждого контура.

Уравнения для определения сопротивлений

Составляем систему уравнений для определения контурных токов. Поскольку есть три контура, то уравнений также будет три. При этом следует учитывать направление электротоков и ЭДС.

Схема уравнений для определения контурных электротоков

После подстановки известных значений сопротивлений в полученные уравнения находим величину интересующих нас токов.

Определение величин контурных электротоков

На последнем этапе определяем значения действительных токов.

Определение величин действительных электротоков

Так решаются задачи с помощью метода контурных электротоков. Главное преимущество данного метода заключается в сокращенном числе уравнений. Оно уменьшается до m – n + 1, где m — это количество ветвей, а n — узлов в электроцепи.

Видео по теме

Adblock
detector