Характеристики выпрямительного диода и его применение

Выпрямительный диод (VD) — это радиоэлемент, предназначенный для преобразования переменного тока в постоянный. Существует немало устройств для выполнения подобной задачи, но диоды являются наиболее востребованными. Их применяют в умножителях напряжения, блоках питания и выпрямителях переменного тока.

Выпрямительные диоды

Общая характеристика и принцип работы

Выпрямительные диоды способны замыкать и размыкать цепи, а также коммутировать электрические сигналы. Их принцип работы основан на определенных особенностях p-n перехода. Суть заключается в том, что у каждого диода есть два вывода или электрода. Один из них — анод, а второй — катод.  Анод соединен с p-слоем, а катод примыкает к n-слою.

Между p- и n-слоем имеется небольшая область без подвижных носителей заряда, обладающая высоким электрическим сопротивлением. Она называется запирающим слоем и определяет потенциальный барьер.

Конструкция выпрямительного диода

Когда на p-n переход поступает внешнее напряжение, создающее электрополе, направленное противоположно полю запирающего слоя, то данный слой начинается уменьшаться по толщине. Окончательно он исчезает при напряжении 0.4–0.6 Вольт. При этом существенно возрастает ток, который называется прямым.

Подача внешнего питания другой полярности приводит к увеличению запирающего слоя и возрастанию сопротивления p-n перехода. В этом случае ток создается неосновными носителями заряда. Он будет иметь незначительную величину даже при сравнительно большом напряжении.

Следовательно, прямой ток создается основными носителями заряда, а обратный — неосновными. Диоды-выпрямители пропускают прямой (положительный) электроток по направлению от анода к катоду.

Как работает выпрямительный диод проще всего объяснить, используя схему простого однополупериодного выпрямителя.

Однополупериодный выпрямитель

Диодный однополупериодный выпрямитель на протяжении положительного полупериода пребывает в открытом положении, поэтому ток проходит через него и поступает на нагрузку. Во время отрицательного полупериода диод запирается, и напряжение не поступает на нагрузку. В результате на выход поступают импульсы, которые состоят только из положительных полупериодов и называются постоянным током.

Разновидности диодов

Основным элементом выпрямляющего диода является полупроводник. Чаще всего в качестве него применяется кристалл кремния или германия. Кремневые диоды используются чаще, чем германиевые. Это связано с тем, что последние отличаются более высокой величиной обратных токов, что существенно ограничивает допустимую величину обратного напряжения. Для германиевых полупроводников этот показатель не превышает 400 Вольт. У кремниевых диодов максимальное обратное напряжение может достигать 1500 Вольт.

Кроме того, кремниевые полупроводники отличаются более высокой рабочей температурой. Но с этим достоинством связан и существенный минус данных радиоэлементов. Если обратное напряжение приводит к их пробою, то он носит тепловой характер. Это означает, что пробитый кремниевый выпрямитель практически всегда необходимо заменять новым.

Преимуществом германиевых считается небольшое падение напряжения при прямом электротоке.

В зависимости от технологии изготовления полупроводниковые диоды делятся на точечные и плоскостные. Первые состоят из небольшой пластины n-типа и стальной иглы, создающей в месте контакта p-n переход. Основными конструктивными элементами плоскостных полупроводниковых диодов являются две соединенные вместе пластины разной электропроводности.

Слаботочный выпрямительный диод

Максимально допустимый прямой ток определяет мощность выпрямительных диодов. Исходя из этой характеристики, их принято делить на:

  • Слаботочные. Они отличаются небольшими габаритами и малым весом. Выпускаются преимущественно в пластмассовых корпусах. Выпрямляемый ток не превышает 0.3 Ампер.
  • Диоды средней мощности. Их корпуса изготавливаются из металла, а на одном из выводов (катоде) присутствует резьба, с помощью которой радиоэлемент можно надежно зафиксировать на радиаторе, используемом для отвода тепла. Способны выпрямлять переменный ток от 0.3 до 10 Ампер.
  • Силовые полупроводниковые выпрямители. Рассчитаны на прямой ток, превышающий 10 А. Выпускаются в металлокерамических или металлостеклянных корпусах таблеточного или штыревого типа.

Радиоэлементы высокой мощности

Существуют еще такие разновидности выпрямительных диодов, как:

  • Импульсные. Их используют в маломощных электронных схемах. Главной их особенностью является небольшое время, затрачиваемое на переход от закрытого состояния к открытому, и наоборот. Это примерно 100 мкс.
  • Обращенные. При обратном включении они оказывают небольшое сопротивление проходящему току и намного большее при прямом включении. Обращенные диоды предназначены в основном для  выпрямления небольших сигналов с амплитудой напряжения не более 1 Вольта.
  • Выпрямители Шоттки. Они отличаются небольшим сопротивлением, поэтому используются для выпрямления значительных токов, достигающих десятки ампер. Внутри выпрямителей Шоттки не накапливается тепловая энергия, поэтому отсутствует и рассасывание неосновных носителей электрозарядов.
  • Стабилитроны. Способны сохранять все свои рабочие характеристики даже в режиме электрического пробоя. За рубежом их называют диодами Зенера.
  • Диодный мост. Данная схема собирается из четырех элементов. Используется с целью улучшения качества преобразования переменного тока в постоянный. Отличается тем, что способен пропускать ток на протяжении каждого полупериода. Мосты выпускаются в виде устройства, заключенного в корпус из пластика.

Диодный мост

Все виды выпрямительных диодов отличаются внешним видом, но их выбор упрощает соответствующее обозначение, нанесенное на корпус. Каталоги с маркировкой и УГО данных полупроводниковых элементов представлены в специальном справочнике. Следует отметить, что маркировка импортных диодов отличается от отечественных. Буквенно-цифровое обозначение отечественных диодов регламентирует ОСТ 11366.919-81. Расшифровка маркировки согласно этому документу представлена на рисунке ниже.

Расшифровка маркировки

Следовательно, если на корпусе имеется маркировка КД202А, то это будет кремниевый выпрямительный диод средней мощности исполнения А.

Существуют требования и относительно условных графических изображений диодов на схемах.

Условное графическое обозначение

Параметры диодного выпрямителя

Каждый тип диодов имеет свои предельно допустимые и рабочие характеристики. Основные параметры выпрямительных диодов представлены в таблице:

Таблица основных параметров

Как правило, к данной информации обращаются тогда, когда элемент из схемы выпрямителей недоступен и ему необходимо найти замену. В большинстве случаев аналоги выбираются по первым пяти параметрам из таблицы, но иногда еще следует учитывать такие характеристики выпрямительных диодов, как рабочая температура и частота.

Очень важный параметр диодов — это их прямой ток. Его стоит учитывать, когда происходит замена исходных диодов на аналоги, а также в случае создания самодельных устройств. В зависимости от различных модификаций показатели значения прямого тока могут достигать величин в несколько десятков и даже сотен ампер. Поэтому в мощных устройствах диодные мосты обязательно устанавливают в специальном корпусе вместе с охлаждающим радиатором, который не позволяет перегреваться кристаллу в диоде.

Некоторые подвиды диодов, например Шоттки, очень восприимчивы к перепадам обратного напряжения, поэтому могут быстро прийти в негодность. А вот кремниевые полупроводники, наоборот, являются устойчивыми к повышению показателей обратного напряжения. Они способны прослужить длительный период, а именно до тех пор, пока кристалл на проводнике не перегреется и не выйдет из строя, для чего необходимо много времени.

Вольт-амперная характеристика

Не всегда на практике расчетные величины полностью совпадают с теоретическими основными параметрами полупроводниковых элементов. Например, вольт-амперная характеристика используемого выпрямительного диода или ВАХ зависит от показателей передвижения электрического тока в проводнике в прямом и обратном направлении. Значение прямого тока на порядок больше обратного, а значение прямого напряжения на порядок меньше. Когда обратное напряжение достигает своей пороговой величины, обратный ток резко возрастает и происходит пробой p-n слоя.

Вольт-амперная характеристика

Зависимости прямых и обратных токов и напряжений можно представить в виде графика. Он состоит из двух ветвей — прямой и обратной. Прямая расположена в первом квадранте и отражает максимальную проводимость диода при прямом напряжении. Обратная находится в третьем квадранте и соответствует низкой проводимости при обратном напряжении. Ток при низкой проводимости через полупроводник не проходит.

ВАХ выпрямительного полупроводникового диода зависит от температуры. С повышением данного параметра уменьшается прямое напряжение. Имеют значение и такие свойства графика, как резкая асимметрия. Смещение прямой ветви указывает на высокую проводимость, а обратной — на низкую.

В областях с высокой разницей потенциалов зависимость тока от напряжения становится практически линейной.

Зависимость ВАХ от температуры

Где применяется на практике

С развитием научно-технического прогресса применение выпрямительных диодов стало необходимостью. Они используются в таких узлах и механизмах, как:

  • Блоки питания двигателей наземных, водных и воздушных транспортных средств, промышленных станков, буровых установок.
  • Диодные мосты для сварочных аппаратов.
  • Выпрямительные установки для гальванических ванн.
  • Установки для очистки воздуха и воды.
  • Высоковольтные линии передач.

Схемы выпрямительных устройств делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Самую простую двухполупериодную схему можно построить на основе двух однополупериодных. В такой выпрямительной схеме присутствуют два диода и один резистор. Если же применить не два, а четыре диода, тогда коэффициент полезного действия существенно повысится.

Самая простая двухполупериодная выпрямительная схема

Качество выпрямителя отражает коэффициент выпрямления. Его величина определяется соотношением прямого и обратного токов. Чем выше коэффициент, тем лучше выпрямитель справляется со своей работой.

Диоды на практике применяются не только в качестве выпрямительных, но и детекторных приборов. Из диодных выпрямителей очень легко можно сконструировать работающие ограничители сигнала. Для этого необходимо подключить два диода параллельно. В таком положении они будут выступать отличной и эффективной защитой для входа усилителя. Например, этот способ используют для микрофонного усилителя, так как он способствует максимальному увеличению качества и уровня сигнала.

Диоды «вживают» в логические приборы, а также рации, теленяни и другие коммутаторы, задачей которых является передача четких бесперебойных удаленных сигналов.

Востребованными на данный момент являются и светодиоды. Еще несколько десятков лет назад их применяли лишь в качестве индикаторов внутри различных приборов. На сегодняшний день светодиодами оснащены и такие простые устройства, как ручные фонарики, и более сложная техника, например, жидкокристаллические телевизоры.

Светодиод

Подводя итог, можно сказать, что современные выпрямительные диоды представлены в большом ассортименте. Они отличаются и своим конструктивным исполнением, и рабочими характеристиками. При выборе нужного радиоэлемента следует руководствоваться данными, приведенными в справочных пособиях.

Видео по теме

Adblock
detector