Блуждающие токи и способы борьбы с ними

Всем знакомо понятие электрического тока. Есть проводник, по нем движутся заряженный частицы, на противоположных концах (или в двух произвольных точках) возникает разность потенциалов. Использование этого физического явления для организации электропитания — безусловное благо цивилизации. Появляется возможность передавать электроэнергию на значительные расстояния, приводить в движение механизмы, получать тепло, изображение, звук, преобразовывать электрическую энергию в механическую.

А если движение заряженных частиц возникает в естественном проводнике, например — в грунте? Это явление называется «блуждающие токи». Их появление не сулит ничего хорошего: возникает опасность поражения электротоком, разрушаются элементы металлических конструкций, расположенных в земле. Кроме того, на «обеспечение» блуждающих токов тратится определенное количество энергии. То есть, возникает незапланированный перерасход.

Как возникает это явление

Рассмотрим блуждающие токи на примере электрифицированной железной дороги, под которой проложен трубопровод.

Блуждающие токи 1

Питание электропоезда осуществляется с помощью двух контактных линий: фазный провод — это контактная сеть, расположенная на опорах-столбах и подвешенная на массивных изоляторах. А нулевой «провод» — это рельсы. На всем пути следования располагаются тяговые подстанции, которые работают по одинаковому принципу: нулевой потенциал соединен с физической «землей» в качестве заземления (зануления).

Блуждающие токи 2

Поскольку рабочее заземление в любом случае имеет физический контакт с грунтом, это абсолютно безопасно.

Для информации:

Не следует путать прохождение виртуальной линии проводника заземления с шаговым напряжением, возникающим из-за разности потенциалов на небольшом участке. Точки разности потенциалов в ситуации с блуждающими токами разнесены на сотни метров, а то и километры.

Между нулевым и фазным проводниками (рельсы и контактный провод) протекает рабочий электрический ток. Он штатно возникает при соединении колес с рельсами и пантографа электровоза с контактной линией. Поскольку рельсы непосредственно связаны с грунтом, можно предположить, что в земле также возникает потенциал, равный потенциалу нулевого проводника. Если он одинаковый на всем протяжении рельсового пути – нет проблем, это нормальная и безопасная ситуация. Но железная дорога редко прокладывается по прямой. Кроме того, электрическая связь между физической землей и металлом ж/д пути не всегда стабильна. Получается, что от одной тяговой подстанции до рядом стоящей (несколько десятков километров) электрический ток может протекать как по рельсу, так и по грунту. То есть, электроны могут блуждать по кратчайшему пути.

Вспоминаем про кривизну ж/д пути, и получаем те самые блуждающие токи, протекающие в толще грунта.

Блуждающие токи 3

А если в этом месте проложены коммуникации (например, стальной трубопровод), то электроны протекают по его стенкам (смотреть иллюстрацию).

Где проблема

По аналогии с обычными электрическими процессами, возникает электрохимическая реакция. Блуждающий ток стремится по пути наименьшего сопротивления (мы же понимаем, что грунт в сравнение с металлической трубой является худшим проводником). В том месте, где проводимость между рельсами и трубопроводом самая высокая (мокрая земля, железистый грунт, и другие причины), возникает так называемая катодная зона с точки зрения трубопровода. Электрический ток как бы «затекает» в трубу. Пока еще это не опасно: трубопровод расположен в грунте, разницы потенциалов нет, у вас из крана не потечет вода под напряжением 3000 вольт.

Пройдя по трубе до благоприятного места перетекания в рельсы, электроны устремляются по грунту в сторону «штатного» проводника. Возникает анодная зона, электроток «вытекает» из трубы, прихватывая за собой частички металла (на молекулярном уровне).

По всем законам протекания электрохимических процессов, на этом участке интенсивно развивается коррозия. Водопроводчики недоумевают: труба из качественной стали, прошла все возможные антикоррозийные обработки, уложена согласно техническим условиям, срок эксплуатации минимум 50 лет. И вдруг прорыв и проржавевшая дыра размером с ладонь. И это все за каких-то пару лет. Причем электрохимической коррозии подвергается любой металл, будь то сталь, медь или алюминий.

Блуждающие токи 4

Никакой связи с влажностью почвы нет, разве что блуждающие токи выбирают «мокрое место» для формирования анодной и катодной зоны. Это страшный сон аварийных бригад водоканала. Если не согласовывать проекты между отраслевыми ведомствами — проблема становится неконтролируемой.

Побочный эффект, усугубляющий потери

Напротив катодной зоны «жертвы», то есть трубопровода, возникает анодная зона рельсового пути. Это логично: если электроток куда-то входит, он должен откуда-то выходить, точнее вытекать. Это ближайшее с точки зрения электропроводности грунта место, где рельс имеет электрический контакт с физической землей (грунтом). В этой точке происходят аналогичные электрохимические разрушения металла железнодорожного полотна. А вот это уже проблема, связанная с безопасностью людей.

Блуждающие токи 5

Кстати, эта ситуация характерна не только для магистральных железных дорог и трубопроводов. Да и прокладываются они не всегда параллельно друг другу. А вот в городе, где рядом с многочисленными подземными коммуникациями проходят трамвайные пути, возникает такое количество разнонаправленных блуждающих токов, что впору задуматься о комплексных мерах защиты.

Блуждающие токи 6

На примере железной дороги, мы разобрали принцип негативного влияния паразитных токов. Эти процессы запрограммированы (если можно так сказать) самой конструкцией,

А где еще существует «блуждающая» проблема

Там, где генерируется электрическая энергия (что довольно логично). Разумеется, в эту «группу риска» входят не только электростанции. Там более, что на таких объектах подобных проблем практически не существует. Блуждающие токи возникают на пути следования электроэнергии к потребителю. Точнее, в точках преобразования напряжения: в зонах действия трансформаторных подстанций.

Блуждающие токи 7

Нам уже понятно, что для появления этих самых паразитных токов необходима разность потенциалов. Представим типовую трансформаторную подстанцию, в которой применяется система заземления TN-C. При изолированной нейтрали, заземляющие контуры соединены между собой нулевым проводником, обозначаемым аббревиатурой PEN.

Блуждающие токи 8

Получается, что по этому проводнику протекает рабочий ток всех потребителей на линии, с одновременным их заземлением. Эта линия (PEN) имеет собственное сопротивление, соответственно в разных ее точках происходит падение напряжения.

PEN (он же заземляющий проводник) получает банальную разность потенциалов между ближайшими контурами заземления. Возникает «неучтенный» ток, который по описанному выше принципу протекает и по физической земле, то есть в грунте. Если на его пути появляется попутный металлический проводник, блуждающий ток ведет себя так же точно, как в трубе под железнодорожным полотном. То есть, в анодной зоне разрушает металл проводника (трубопровод, арматура железобетонных конструкций, оболочка кабеля), а в катодной зоне уничтожает PEN-проводник.

Пробой изоляции

Ситуация с нарушением изолирующей оболочки кабеля может возникнуть где угодно. Вопрос в том, какие будут последствия.

Предположим утечку фазы в грунт на значительном расстоянии от рабочего контура заземления. Если сила тока достаточно большая (точка пробоя большой площади), созданы «благоприятные» условия: влажный грунт, и прочее — достаточно быстро сработает защитная автоматика, и линия будет отключена. А если сила тока меньше, чем ток «отсечки» автомата? Тогда между «пятном» утечки и «землей» возникают долгоиграющие блуждающие токи. А дальше вы знаете: попутный трубопровод, кабель в металлической оболочке, анодная зона, электрохимическая коррозия…

Собственно, группа риска определена:

  • Трубопроводы с металлическими стенками. Это может быть вода, канализация, нефте- или газопроводы.
  • Кабельные линии (силовые, сигнальные, информационные) с металлической оболочкой.
  • Металлическая арматура в конструкциях дорог или зданий.
  • Габаритные цельнометаллические сооружения. Например, емкость (танк) для хранения нефтепродуктов.

Защита от блуждающих токов

На самом деле, полноценной защиты от этой проблемы нет. Ее просто не может быть с точки зрения физики. Единственный действенный метод — подсунуть всепожирающим блуждающим токам иную жертву, которую не так жалко. Мало того, у этого приспособления и название соответствующее: «жертвенный анод». А методика именуется катодной защитой.

Принцип работы в исключении анодных зон на защищаемом объекте. Вместо них используются те самые жертвенные аноды, которые меняют по мере их электрохимического разрушения. А вокруг объекта формируются лишь безопасные для него катодные зоны.

Для того, чтобы система функционировала, требуется дополнительная энергия. В критических местах устанавливаются так называемые станции катодной защиты, которые запитаны от линий электропередач.

Блуждающие токи 9

Это связано с некоторыми затратами, которые несравнимы с потерями на ремонт и восстановление испорченных объектов (трубопровода, кабеля и прочего).

А если защищаемый объект относится к опасной категории (например, нефтехранилище, в котором в результате электрохимической коррозии может произойти утечка продукта), то стоимость защитных устройств вообще не берется во внимание.

Блуждающие токи 10

Недостатки систем катодной защиты

Методика отнюдь не универсальна, необходимо строить каждый объект под конкретные условия эксплуатации. При неправильных расчетах силы защитного тока, происходит так называемая «перезащита», и уже катодная станция является источником блуждающих токов. Поэтому, даже после монтажа и введения в строй, катодные системы постоянно контролируются. Для этого в разных точках монтируются специальные колодцы для замера силы тока защиты.

Блуждающие токи 11

Контроль может быть ручным или автоматическим. В последнем случае устанавливается система слежения за параметрами, соединенная с аппаратурой управления катодной станцией.

Дополнительные способы защиты от блуждающих токов

  • Применение кабельных магистралей с внешней оболочкой, которая является хорошим диэлектриком. Например, из сшитого полиэтилена.
  • При проектировании систем энергоснабжения, использовать только системы заземления типа TN-S. В случае капитального ремонта сетей, заменять устаревшую систему TN-C.
  • При расчете маршрутов железнодорожных путей и подземных коммуникаций, по возможности разносить эти объекты.
  • Использовать под рельсами изолирующие насыпи, из материалов с минимальной электропроводностью.

Видео по теме