Схемы и расчет мостового выпрямителя

С целью получения постоянного тока из переменного применяются мостовые выпрямители. Данные устройства рассчитаны на использование определённых входных параметров и создают ток и напряжение, соответствующие требованиям того прибора, который должен быть подключён.

Внешний вид выпрямителя

Использование постоянного и переменного тока

В электротехнике может использоваться как постоянный, так и переменный ток. Его выбор зависит от оборудования, которому нужно строго определённое питание. Также при производстве электроэнергии в одних случаях получают переменное, в других постоянное напряжение, что определяется способом, с помощью которого это осуществляется. В дальнейшем оно преобразуется в нужный вид.

При транспортировке выгоднее передавать переменный ток. Когда он поступает в бытовые розетки, то имеет частоту 50 Гц. Напряжение при этом составляет 220 Вольт. В разных странах эти параметры могут отличаться друг от друга. Для промышленного оборудования чаще используется переменный ток.

Когда для определённого устройства требуется постоянный ток, применяется мостовой выпрямитель. Иногда он бывает необходим только для отдельных узлов оборудования. В этом случае схемы выпрямления являются частью соответствующего устройства.

Особенности переменного тока

Параметры переменного тока и напряжения изменяются в соответствии с синусоидальным законом. Сначала с максимального значения до нуля, затем меняют знак и начинают расти по абсолютной величине. После достижения максимального отрицательного значения они изменяются в обратном направлении. Этот процесс происходит циклически. Изменения тока обуславливают создание переменного магнитного поля, оказывающего влияние на электрические процессы устройства. В некоторых случаях синусоидальный ток необходимо выпрямить.

Принцип действия выпрямителя

Сначала переменный ток необходимо преобразовать так, чтобы получить нужные параметры тока и напряжения. Для этой цели используют трансформатор. Он представляет собой рамку из ферромагнетика, на которой имеется две обмотки. На первую поступает переменный ток от сети питания. Со второй снимаются ток и напряжение, соответствующие необходимым параметрам.

Выпрямление происходит в два этапа. На первом вместо синусоидального сигнала получают тот, который имеет только положительные полупериоды. На втором происходит выпрямление с помощью использования конденсаторов. При этом на их пластины поступает переменный сигнал, а затем разряд конденсатора осуществляет его сглаживание. Существуют различные виды выпрямителей, но их общий принцип работы в значительной степени соответствует приведённому описанию.

Форма сигнала на входе и на выходе выпрямителя

Классификация выпрямителей

Их можно разделять по различным признакам. Далее перечислены наиболее популярные виды классификаций:

  • По количеству используемых в работе полупериодов. На начальном этапе преобразования получают график электрического сигнала, у которого нет отрицательных полупериодов. Это делают одним из двух способов. В однополупериодных выпрямителях их просто убирают, а в двухполупериодных вместо отрицательных получают такие же, но положительные. В последнем случае качество выпрямления будет выше.
  • В выпрямителях обычно используется трансформатор, но в некоторых схемах он может не применяться. Это практикуется, когда нет необходимости проводить предварительное преобразование напряжения и тока.
  • Схема выпрямителя может включать диодный мост или же работать без него.
  • Существуют выпрямители, умножающие электронапряжение. При их использовании значение выходного выпрямленного напряжения может быть больше входного в несколько раз. Такой эффект обычно достигается за счёт одновременной разрядки нескольких конденсаторов.
  • Рассматриваемые устройства различаются в зависимости от того, со сколькими фазами они способны работать. Наиболее распространенными являются однофазный мостовой выпрямитель и трёхфазный мостовой выпрямитель, но они также могут быть двух- и N-фазные.
  • Существуют различные типы схем. Наибольшее распространение получили диодные, но также используются полупроводниковые, тиристорные, механические, вакуумные и другие.
  • Имеет значение вид пропускаемой волны. Исходя из этого параметра, устройства могут быть аналоговыми, цифровыми и импульсными.

Для каждого вида выпрямителей важно учитывать качество выпрямления тока. Его вид выбирают так, чтобы получить сигнал с необходимыми параметрами.

Структурная схема классификации выпрямителей

Что собой представляет мостовой выпрямитель

Такие выпрямители характеризируются наличием диодного моста. Они преобразовывают входной синусоидальный сигнал в такой, который не имеет отрицательных полупериодов. Это можно сделать различными способами, от выбора которых зависит качество работы выпрямительного моста.

Схема мостового выпрямителя строится на использовании диодов. В этих радиодеталях применяются полупроводники p-типа и n-типа. Если через них проходит сигнал определённой полярности, то он пропускается без изменений. Если знак меняется, на выходе получается нулевой ток.

Существуют различные варианты мостовых схем. Самая простая — однофазная мостовая схема выпрямления. Ее использование обеспечивает на выходе положительные полупериоды, разделённые нулевыми участками. Мостовой однофазный выпрямитель выполняет выпрямление невысокого качества.

При использовании более сложных диодных мостов можно получить сигнал, в котором отрицательные импульсы заменены такими же, но положительными. Выпрямительный мост с четырьмя диодами обеспечивает на выходе сигнал удвоенной частоты.

Мостовой трехфазный выпрямитель, схема которого включает три диодных моста, расположенных параллельно, позволяет получать наиболее высокое качество выпрямления.

Виды мостовых выпрямителей

Диодные мосты различаются между собой качеством выпрямления и другими характеристиками.

Однополупериодный мостовой выпрямитель

Схема однофазного мостового выпрямителя считается наиболее простой. С ее помощью получают низкокачественное выпрямление с большим количеством гармоник.

Схема однополупериодного выпрямителя

В схеме не используется трансформатор. Диод применяется только один. Отсутствует сглаживание с помощью конденсаторов. Результатом работы выпрямителя является появление положительных импульсов и стирание отрицательных. Несмотря на относительно низкое качество работы, такие схемы все же находят своё применение.

Один из примеров — управляемый выпрямитель. Переключатель позволяет выбирать один из двух режимов: яркий или тусклый. В последнем случае ток пройдёт через однополупериодный мостовой выпрямитель. При этом интенсивность освещения будет снижена.

Пример применения однополупериодной схемы выпрямления

Особенности двухполупериодного выпрямителя

В двухполупериодной схеме присутствует трансформатор. Сигнал после него поступает в выпрямительный мост, где его отрицательные полупериоды заменяются положительными.

Схема двухполупериодного выпрямителя

Принцип действия устройства основывается на использовании средней точки при подсоединении ко вторичной обмотке. В результате через один из диодов выпрямительного моста проходит положительный сигнал, а через второй — отрицательный. Недостаток данной схемы заключается в использовании трансформаторного устройства со средней точкой, которое может не всегда быть в наличии.

Использование четырёхдиодного моста

Выпрямитель такого вида обеспечивает высокое качество выходного сигнала. Мост, схема которого включает четыре диода, позволяет получать выходной положительный импульс на каждом полупериоде.

Схема четырёхдиодного моста

Чтобы понять работу четырехдиодного моста, необходимо изучить, как она функционирует на каждом полупериоде. Сначала рассмотрим, как работает схема при условии, что на верхнем проводе положительный потенциал, а на нижнем отрицательный.

Работа в положительном полупериоде

Направление стрелок указывает движение от минуса к плюсу. Для управления током используется два диода: левый нижний и правый верхний. Два другие закрыты.

Теперь изменим знак потенциала на проводах: на нижнем будет положительный, а на верхнем отрицательный. В данном случае рабочими будут левый верхний и правый нижний диоды. Остальные два на протяжении рассматриваемого времени остаются закрытыми.

Функционирование в отрицательном полупериоде

На рисунках выше представлена традиционная форма схемы выпрямителя. Существует эквивалентная схема, которая для некоторых может быть более удобной при определении работающих диодов.

Альтернативное изображение четырехдиодной мостовой схемы

Трёхфазный мостовой выпрямитель

В быту в основном используются однофазные устройства. Если требуется подключить мощное оборудование, а в производственных условиях часто возникает такая необходимость, то используют трёхфазное питание. В этом случае трехфазная мостовая схема будет выглядеть таким образом:

Схема трехфазного мостового выпрямителя

В этом устройстве каждая фаза подключена к своей паре диодов. Если проходит положительный импульс, то он открывает диод, расположенный справа и закрывает тот, который находится слева. При прохождении отрицательного импульса происходит следующее: открывается диод, находящийся слева и закрывается расположенный справа.

Таким образом, независимо от того, с каким знаком приходит импульс, он преобразуется на выходе в положительный. График, полученного на выходе сигнала, выглядит следующим образом:

Сигнал до и после преобразования

Выбор диодного моста

При выборе диодного моста необходимо обращать внимание на следующие его характеристики:

  • Корпус, в котором он смонтирован. Мост можно сделать из отдельных диодов, но более удобно воспользоваться уже готовым, который находится в специальном корпусе.
  • Коэффициент пульсаций. Так называют отношение амплитуды поступающего сигнала к величине выпрямленного.
  • Максимальный ток. Через каждую схему может проходить определенного значения. Он должен соответствовать условиям эксплуатации узла.
  • Нужно учитывать, рассчитано ли устройство на однофазное или трёхфазное напряжение.
  • Существуют требования к величине обратного напряжения. Если его превысить, то может произойти пробой диодов, которые входят в состав моста. Эта деталь не должна пропускать отрицательные импульсы, однако если напряжение будет слишком большим, то произойдёт разряд, который сделает диод неисправным.

Проведение расчётов

Эффективно работающий выпрямитель должен соответствовать определенным требованиям. В частности речь идёт о выходном токе, выпрямленном напряжении, максимальном значении обратного напряжения для используемых диодов.

Чтобы построить хорошо работающую схему, необходимо грамотно рассчитать ее параметры. Для примера рассмотрим диаграмму и расчет однополупериодного выпрямителя.

Графики сигналов на входе и на выходе выпрямителя

Как видно из графиков, входное электронапряжение изменяется по закону синусоиды. В этом случае расчет среднего значения выполняется по формуле:

Определение среднего значения выпрямленного напряжения

Действующее значение входного напряжения определяется следующим образом:

Расчет действующего значения

Далее рассчитываем значение силы электротока на выходе выпрямителя и на вторичной обмотке трансформатора. Последняя формула позволяет определить коэффициент пульсации.

Формулы для расчёта параметров выпрямителя

К недостаткам однополупериодного выпрямителя относят высокий коэффициент пульсации. Более качественный выходной сигнал даёт двухполупериодный мост с выводом от средней точки трансформатора.

Графики сигналов на входе и на выходе двухполупериодного выпрямителя

Расчет двухполупериодного моста выполняется с помощью следующих формул:

Расчёт двухполупериодного выпрямителя

Достоинствами двухполупериодной схемы являются вдвое большие выходные ток и напряжение, а также значительно меньший коэффициент пульсации.

Видео по теме

Adblock
detector